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Abstract—While brain-computer interfaces (BCI) based on
electroencephalography (EEG) have improved dramatically over
the past five years, their inconvenient, head-worn form factor has
challenged their wider adoption. In this paper, we investigate how
EEG signals collected from the ear could be used for "gestural"
control of a brain-computer interface (BCI). Specifically, we
investigate the efficacy of a support vector classifier (SVC) in
distinguishing between mental tasks, or gestures, recorded by
a modified, consumer headset. We find that an SVC reaches
acceptable BCI accuracy for nine of the subjects in our pool
(n=12), and distinguishes at least one pair of gestures better
than chance for all subjects. User surveys highlight the need
for longer-term research on user attitudes toward in-ear EEG
devices, for discreet, non-invasive BCIs.

I. INTRODUCTION

Brain-computer interfaces (BCIs) enable the control of a
computer without muscular movement. BCIs based on elec-
troencephalography (EEG) are popular due to their use of non-
invasive surface electrodes.

The hardware that drives EEG-based BCIs has improved
dramatically over the past five years, decreasing in size and
cost by orders of magnitude [1]. Many consumer devices
leverage this technology: as of February 2016, there are at least
five EEG devices on the market, ranging from 100 to 500 USD,
and featuring one to sixteen electrodes. Many of them transmit
data wirelessly to computers and smart devices. Meanwhile,
advances in machine learning have radically improved the
reliability of BCI applications. Taken together, prospects seem
bright for the wider adoption of BCIs in everyday life.

However, the head-worn form-factor, and awkward visibility
of EEG-based BCIs has proven a stubborn challenge to BCI
adoption [2]. Both disabled and healthy subjects complain
about the comfort of head-worn devices, the difficulty of
applying electrodes correctly to the scalp, and questionable
aesthetics of wearing such a visible device in public, social
settings [3], [4].

One possible solution to this problem is to embed EEG
electrodes in earbuds, collecting EEG signals from the ear
canal. While early work framed in-ear EEG largely as a
tradeoff between ergonomics and signal quality [5], in-ear
EEG signals are at least robust enough to detect auditory
evoked responses [6], more recent work has indicated that
EEG collected in the ear may have its own, unique affordances.
For example, one study built a rudimentary eye-tracker using
muscular signals (EMG, or electromyography) collected from
the ear canal [7].

The performance of mental gestures has proven a popular
paradigm in past research on scalp-based BCIs [8], [9]. Until

now, no studies have explored mental-gesture based BCIs
using in-ear EEG. Which gestures are well-suited to signals
collected from the ear, and how people rate the usability of
gesture-based in-ear EEG, remains largely a mystery.

In this paper, we take an exploratory step toward gesture-
based BCI from EEG data collected at the ear. We collect a
corpus of mental gestures from a number of subjects, and,
for each subject, we simulate calibrating a binary BCI, and
estimate its accuracy. We also collect self-report data from
subjects about the usability of tasks, and of the device.

We find that we can calibrate a decent binary BCI for most
subjects. In line with work for traditional, EEG-based BCI,
we find that calibrated BCI accuracy correlates strongly to
the average classifiability of gesture for that study, evidence
of BCI "literacy" or competence. We do not find evidence
that different gestures lead to better or worse classifiability.
However, we do find that subjects rate some gestures as easier
and more engaging to perform and repeat. Finally, we find
that subjects are divided on attitudes toward wearing an EEG
device in their ear. Our findings highlight the need for longer-
term usability probes to gauge the usefulness and desirability
of in-ear EEG in everyday life.

II. BACKGROUND

Generally, BCI systems aim to recognize a user’s mental
gestures as one of a finite set of discrete symbols, a problem
that can be framed as a pattern recognition task [10]. The
difficulty of this task stems primarily from the fact that
symbols are expressed differently between individuals (they
are idiosyncratic) [11].

A. Adaptive Calibration and Classification

In order to compensate for variability in BCI signals,
recent work has leveraged adaptive classification algorithms to
distinguish between mental gestures [10], [11], [8]. Automated
calibration procedures have turned BCI novices into competent
users over the course of hours instead of days or weeks,
and without manual calibration [11]. During calibration, users
perform labeled (i.e. known) mental gestures, in order to
produce training data for a classifier.

Relevant to our study are support vector classifiers (SVCs),
which create models that can predict categorical classes of
unlabeled data. Past work has found particular success using
linear SVCs in BCI application, as opposed to SVCs with non-
linear kernels, or other non-linear classifiers such as neural
networks [12], [1]. Linear SVCs select the linear hyperplane
that maximizes distance from the nearest training points, which



increases the model’s generalizability. The effectiveness of
linear SVCs compared to other classifiers have led some to
believe that classification in EEG-based BCI is fundamentally
linear [10].

B. Classifiability of Gestures Collected from the Ear

Due to linear support vector classifiers’ common use in
gesture-based BCIs, the ability of an SVC to distinguish
between gestures is a useful way to gague the potential for
developing an effective BCI based around the performance of
mental gestures. [8], [13] In this paper, we collect a corpus
of mental gestures, generate all possible pairs of gestures, and
estimate each pair’s distinguishability to the classifier.

The results of this procedure can shed light on two major
issues when developing a novel BCI. First, we can develop
a rough, best-case estimate of our BCI’s reliability, as our
gestures are recorded in a controlled setting, and we do not
account for changes in gesture expression over time. Second,
by seeing which tasks appear most frequently in best-case
gesture pairs, this procedure can help us form hypotheses about
which gestures to include in standard calibration routines.

Finally, this procedure allows us to hypothesize about which
sources of signal are most informative. If we see certain types
of gestures frequently appearing in best-case gesture pairs, we
can begin to generate hypotheses about what sorts of signal
in-ear EEG is well-suited to pick up.

III. SELECTING MENTAL GESTURES

TABLE I
LIST OF MENTAL GESTURES.

Task Name Description
Breath Relaxed breathing with eyes closed
Song Imagine a chosen song with eyes closed
Listen Listen to a 40 Hz tone with eyes closed
Face Imagine a chosen face with eyes closed
Cube Imagine a displayed cube is rotating with eyes open

We primarily chose tasks that showed promise in previous
experiments [9], [13], though generally we found little re-
search to suggest which mental tasks result in the most robust
EEG signals. We attempted to include a variety of tasks to
draw on different EEG signals. The breath, song, listen, and
face tasks were performed with the participants’ eyes closed,
while the cube task was performed with the participants’
eyes open. In addition, the song and face tasks involved an
additional unique choice by the participant.

IV. DATA COLLECTION

12 graduate students (7 male, 5 female, with a mean age
of 28 ± 4.36) from a large university on the west coast of
the United States completed our study protocol, which was
approved by the the university’s Committee for Protection
of Human Subjects (CPHS). Study procedures began with
an informed consent process, followed by a demographics
questionnaire, a set up period with the EEG device, completion

of a set of 5 tasks presented on a laptop while EEG was
recorded, and finally a post-experiment questionnaire. We used
a Neurosky Mindwave Mobile wireless EEG headset, which is
sold online to the general public for 99.99 USD. Modifications
made to the original included releasing the sensing electrode
from the plastic forehead arm, removing the electrode, and
replacing it by soldering a new 6 mm gold cup electrode onto
the original wire. The gold cup electrode was bent to allow
for a comfortable fit in a range of ear canal sizes. The device
being worn is shown in Figure 1.

Fig. 1. Modified Neurosky Mindwave setup.

To set up the device, the experimenter placed the sensing
electrode in the ear canal against the superior wall (facing
upward) with a rolled foam earplug placed beneath it to keep
the electrode comfortably in place. The Mindwave device
transmits data wirelessly via Bluetooth, so it was paired and
the connection was confirmed before beginning the task phase
of the experiment.

Table I lists the tasks performed by participants. Instructions
for tasks were presented visually using PsychoPy [14] and read
aloud verbally by the experimenter. We asked participants to
sit in a comfortable position and remain as still as possible for
all tasks. Participants used a wireless remote held comfortably
in their laps to begin each task when they were ready. Each
task was recorded during two sets of 5 trials each to lessen
boredom effects and each trial was 12 seconds in length.

V. DATA PROCESSING

A. Producing Feature Vectors

Following [13], we use logarithmic binning to produce
compressed feature vectors of a variable size. This technique
has been show to offer robust, linear classifiability in healthy
subjects. It is unique in its use of the entire frequency
spectrum. Since EEG activity is associated with frequencies
from 1-40Hz, we presume this range contains the majority of
relevant signal. However, we do not rule out the possibility
that useful signal exists in other frequency ranges. Muscular
activity, for example, might be correlated with mental gestures
in some cases. Logarithmic binning produces feature vectors
biased toward known sources of signal, while still including
data points from outside this frequency range that may be
informative.



Fig. 2. BCI performance for each participant, estimated by classifier accuracy
on best-case gesture pair.

B. Linear SVC

We analyzed the EEG signals collected during the tasks
using a support vector classifier (SVC). Since past work has
shown that classification tasks in EEG-based BCI are linear
[10], we used LIBLINEAR, [15], a popular linear SVC kernel.
For each task, for each participant, 120 seconds of data was
collected in total across 10 trials of 12 seconds each. We
initially tried analyzing all 12 seconds of data per trial, but
found that removing the first 2 seconds from the beginning,
and last second from the end of each trial to account for
the transition to and from performing a given task improved
our results. Following preprocessing (see Producing Feature
Vectors), we have 30 samples per participant, per task.

C. Simulating the Calibration of a Binary BCI

Of the mental gestures in the dataset, we seek to identify, for
each subject, the pair of gestures that produces the highest ac-
curacy with our Linear SVC. This will result in a personalized,
binary (two-class) classifier, where the SVC can discriminate
between two mental gestures performed by the subject with
the highest classification accuracy. The gesture-pairs may vary
from subject to subject. For example, one subject’s best-case
pair may be breath and song, while another’s may be cube
and face.

To simulate calibrating a binary BCI for a given subject,
we generate every possible pair of gestures. For each gesture,
we perform seven-fold cross-validation, whereby the gesture
data in question are split into different sets of training and
testing data. This allows us to estimate the performance of
our classifier on unknown samples, assuming samples in the
future are drawn from the same distribution as the samples in
our training set. The output of this process is, for each pair
of gestures, a mean accuracy, and standard deviation between
accuracies over the seven folds of cross-validation.

VI. SIMULATED BCI RESULTS

We simulated the calibration of a binary BCI by training
and testing an SVC for all possible pairs of gestures, for each
participant, and choosing each participant’s highest-scoring

Fig. 3. For each subject, best-case BCI performance (the estimated accuracy
of the top-scoring pair of gesutres), against the average gesture pair perfor-
mance for that participant.

(most accurate) gesture pair. Estimated BCI accuracy across
all subjects was an average of 85.4% (σ = 12.1%) (Figure 2).
Nine of the twelve subjects in our pool reached Vidaurre and
Blankertz’s (2010) threshold of BCI literacy (75%) [16] Six
of twelve subjects achieved estimated accuracies of over 90%.

All gestures we gave to our users appeared in at least one
best-case gesture pair (Table I). Listen and breath appeared
8 and 6 times, respectively, though our sample size was too
small to establish statistical significance (24 observations, or
two per participant). When we considered only gesture pairs
that acheived over 75% threshold accuracy, we found that
all gestures still appeared in at least one best-case pair, and
gestures appeared with roughly the same frequency across
best-case pairs.

Across all possible pairs of gestures, among all subjects, we
find no correlation between gesture and classifier accuracy. We
also do not find any correlation between the device’s reported
signal quality and classifier accuracy. However, we find a
strong correlation between a subject’s average classifier accu-
racy (on all gesture pairs), and a subject’s best-case accuracy
(r = .9334, p < 0.001) (Fig 3). We do not find evidence that
classifier accuracy correlates to any of our subject-reported
data (task ease of use, repeatability, willingness to use again),
nor to any of the demographic variables we collected.

VII. USABILITY RESULTS

Figure 4 shows the mean responses for the post-experiment
questionnaire’s 7-point Likert-type usability scales. The ques-
tionnaire asked participants to rate the tasks on three usability
scales with labeled extremes: “Please rate each of the exper-
imental tasks on ease of performing. (very difficult - very
easy),” “Please rate each of the experimental tasks on how
engaging/interesting they were to perform. (very boring - very
engaging)”, and “Please rate each of the experimental tasks
on how easy they would be to repeat often. (very difficult to
repeat - very easy to repeat).” The results of nine participants
are shown here, as the three experimenters’ responses were
not included.



Fig. 4. Post-experiment questionnaire mean responses on a 7-point likert-type
scale.

The song and face tasks included a choice by the participant
of which song or face to imagine and the experimenter
recorded these choices. For the face task, all participants
except one chose the face of someone with whom they
had a personal relationship like a family member, friend, or
significant other; the participant who did not follow this trend
chose a famous politician. One participant commented that the
face task elicited an emotional response,

"Imagining my grandmother led to many other nice
associations, including compassion"

Another optional, open response question asked, “Do you
think you would be likely to wear an in-ear EEG device in a
real life situation?” Three subjects provided negative reviews.

"I currently can’t imagine wanting to put something
in my ear (even earbuds are not comfortable), but
maybe, if it was really unobtrusive"
"Not particularly likely; only if everyone’s doing it"
"Maybe as specialized work equipment"

The remaining subjects reported that they might consider
wearing in-ear EEG in their everyday life, framing their
adoption as conditional on other factors.

"Sure as long as it was easy to put on or wear"
"Sure! If I could do something interesting with it,
depends on the application."
"Yes (if it gets smaller)"

VIII. LIMITATIONS

Our study included only twelve subjects, all of whom were
fairly young (mean age of 28), and students at a university.
Our study also tested a limited number of mental gestures.
Future work should attempt to replicate our findings with a
larger, more diverse sample.

We used a $100 consumer device that we modified our-
selves; it is unclear how robustly our device simulates the
performance of a hypothetical consumer device that measures
EEG at the ear. It is also unclear how the homemade appear-
ance of the device affected participants’ assessments of how
likely they would be to wear an in-ear EEG device in the
future.

Our questions on usability only covered participants’ first
experiences with the device, and with their gestures. From a
technical standpoint, our study does not indicate if or how the
performance of mental gestures may change over time. From
a usability standpoint, our study also does not explore how
attitudes toward usability (e.g. learning effects), nor attitudes
toward the device, may change as subjects use in-ear EEG in
daily life.

We collected data from participants while they were sitting
down, and indoors. It is not clear how our results would
generalize to ambulatory sensing environments (for example,
how noise from muscular movement, or environmental electro-
magnetic noise, would effect classifier accuracy). Furthermore,
participants were told that the data we were collecting was
for a use-case of authentication. Although the questions and
responses reported in Section VII were not specific to authen-
tication, the use case may have affected users’ responses, or
the way users expressed their mental gestures.

Finally, the room in which our data were collected was not
well-insulated from outside noises. Sounds of passing people,
and hourly bells from the nearby bell tower, were clearly
audible in our subject environment. It is unclear how these
aural distractions affected our results, or if these distractions
make our work more or less generalizable to performance in
real-life settings.

IX. DISCUSSION

This study investigated how well EEG signals, collected
from the ear canal, could be used to calibrate a binary brain-
computer interface, using mental gesture samples collected
from twelve subjects. Generally, our subjects’ estimated ac-
curacy was good: average best-case accuracy was 85.4% (σ
= 12.1%) (Figure 2), and nine of the twelve subjects in our
pool reached a threshold for "BCI literacy" [16]. Six of twelve
subjects achieved estimated accuracies of over 90%.

Interestingly, we found no correlation between gesture and
classifier accuracy, nor any correlation between classifier ac-
curacy and signal quality, or any of the demographic variables
we collected. However, we found a strong, linear correlation
between a subject’s estimated BCI accuracy, and the average
classifier accuracy across all gesture pairs for that subject.
This finding highlights the highly idiosyncratic nature of
BCI "(il)literacy," a phenomenon noted in scalp-based BCIs,
whereby some subjects show a general aptitude for using
BCIs, while others struggle to achieve acceptable performance.
Factors that contribute to BCI literacy are an ongoing subject
of research in traditional BCIs.

While all gestures were equally likely to result in strong
BCI accuracy, subjects did not rate all tasks as equally usable.
Subjects rated the "breath" and "listen" gestures as easiest to
perform, and easiest to repeat. The "song" gesture was rated
as most engaging, but slightly less usable than "breath" and
"listen." BCIs that use in-ear EEG should weigh the usability
of gestures against their accuracy in customized classifiers.
While a given gesture may afford a subject good accuracy,



the user may not adopt the BCI if this gesture is not easy or
pleasant to perform in everyday life.

Finally, subjects were highly divided on the question of
how likely they would be to wear an in-ear EEG device in
real-life situations. However, these judgments were based on
first encounters with our device, which was not built with
ergonomics in mind, and subjects made these judgments in
the absence of interface feedback. A longer-term usability
probe could begin to investigate in greater depth usability and
attitudes toward in-ear EEG sensing.

X. FUTURE WORK

Our work provides a starting point for understanding how
in-ear EEG could be used to build a mental-gesture based
BCI. However, much work remains. While in-ear sensors could
provide usability benefits in everyday settings, our work does
little to explore how these benefits would be realized. One
clear priority for future work is to examine the accuracy of
classifiers in ambulatory settings: outdoors, and in a wide
variety of movement contexts (walking, running, biking, etc).

In our study, we found evidence of general BCI liter-
acy/illiteracy in individual subjects; future work could explore
how in-ear BCI literacy relates to literacy with traditional,
scalp-based BCIs, along with the phenomenon of BCI literacy
more generally. Future studies could also experiment with
a more diverse range of mental gestures, and with a larger
subject pool. Such work could investigate what kinds of tasks
are well-suited to in-ear, versus scalp-based BCIs.

Crucially, future work should examine user attitudes toward
the device, and toward gestures and their performance, over
longer timescales, and in more naturalistic settings. A longer-
term, in vivo study could investigate the effects of practice
with a gesture, how users relate to their EEG device, and how
people feel being monitored by EEG, in a variety of different
contexts and environments. Longer-term studies could reveal
challenges and opportunities to usability, and surface factors
that will drive or hinder future adoption of in-ear BCIs.

XI. CONCLUSION

Our results indicate that in-ear BCI applications using
mental gestures may be feasible. We also find evidence that
individual differences in BCI "literacy," a common finding
from traditional BCI work, also hold for in-ear BCIs. While
in-ear EEG offers potential advantages to usability over scalp-
based EEG, longer-term, in vivo studies will be necessary
to fully realize these benefits. Examining the use of in-
ear, mental-gesture based BCIs in different contexts, and in
different social settings, will shed light on the user preferences
and attitudes that will drive or hinder adoption of such systems
in the future.
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